
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 179 (2006) 152–163
Communication

Quantifying in vivo MR spectra with circles q

Refaat E. Gabr b, Ronald Ouwerkerk a, Paul A. Bottomley a,b,*

a Division of MR Reasearch, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
b Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA

Received 20 September 2005; revised 1 November 2005
Available online 1 December 2005
Abstract

Accurate and robust quantification of in vivo magnetic resonance spectroscopy (MRS) data is essential to its application in research
and medicine. The performance of existing analysis methods is problematic for in vivo studies where low signal-to-noise ratio, overlap-
ping peaks and intense artefacts are endemic. Here, a new frequency-domain technique for MRS data analysis is introduced wherein the
circular trajectories which result when spectral peaks are projected onto the complex plane, are fitted with active circle models. The use of
active contour strategies naturally allows incorporation of prior knowledge as constraint energy terms. The problem of phasing spectra is
eliminated, and baseline artefacts are dealt with using active contours-snakes. The stability and accuracy of the new technique, CFIT, is
compared with a standard time-domain fitting tool, using simulated 31P data with varying amounts of noise and 98 real human chest and
heart 31P MRS data sets. The real data were also analyzed by our standard frequency-domain absorption-mode technique. On the real
data, CFIT demonstrated the least fitting failures of all methods and an accuracy similar to the latter method, with both these techniques
outperforming the time-domain approach. Contrasting results from simulations argue that performance relative to Cramer-Rao Bounds
may not be a suitable indicator of fitting performance with typical in vivo data such as these. We conclude that CFIT is a stable, accurate
alternative to the best existing methods of fitting in vivo data.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate quantification of in vivo MR spectroscopic
(MRS) data is often thwarted by low signal-to-noise ratio
(SNR), overlapping resonances, and baseline artefacts aris-
ing from physiological motion, localizing gradients, and/or
delayed acquisition. Standard quantification approaches
apply numerical methods to estimate parameters that char-
acterize a mathematical model of the MRS signal, and are
generally classified as either time- or frequency-domain
methods. Time-domain methods operate directly on the
raw data and offer some convenient ways of addressing
incomplete or corrupted data [1]. They can be further
divided into interactive and black box methods. Interactive
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methods employ numerical optimization techniques to iter-
atively solve a non-linear least-squares optimization prob-
lem [1–3] based on user-defined initial parameter values.
Prior knowledge about peak structure may be used to con-
strain the solution. The optimization can be performed
either locally, or globally [4,5]. Global optimization does
not require user interaction but is inherently computation-
ally inefficient. Black box methods provide non-iterative
fitting solutions employing linear prediction or state-space
theory [1,3,6–8]. These are fast and require little user inter-
action, but perform poorly with in vivo data because they
allow little or no prior knowledge. A major problem with
time-domain techniques is that frequency-selective analysis
is not straightforward, albeit soluble [9–12]. The frequency
domain is certainly the natural domain for spectral analy-
sis: it is in the frequency domain wherein user interactivity
invariably occurs, from the input of initial values and prior
knowledge, to the final judgment of acceptance of a fit.
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Frequency-domain methods model the spectrum as a set
of Lorentzian, Gaussian or Voigt peaks, and fit the data
using least-squares methods. The real and imaginary parts
or the complex signal [13,14] can be used in the fitting pro-
cess, but quantification is more robust when the number of
parameters being estimated is minimized. This can be
achieved, for example, by first correcting the spectrum
for zero and first-order phase, so that all of the peaks have
zero phase. Then, only the pure absorption-mode signal
need be fitted. However, the baseline is often severely dis-
torted by the acquisition delays required for spatial encod-
ing gradients which convolve the spectrum with sinc
functions [15], by transient eddy currents from the gradi-
ents, and by physiological motion. This too must be
corrected, either by modeling the baseline with a set of
polynomial or sinusoidal basis functions, or by
deconvolution.

While new solutions are being investigated [16–18],
phase and baseline corrections are difficult to automate
and usually cannot match the performance of an experi-
enced manual operator when artefacts are large. This is evi-
denced, for example, by a 50% increase in the standard
deviation of normal human cardiac phosphocreatine
(PCr) to adenosine triphosphate (ATP) ratios quantified
in phosphorus (31P) spectra by automated Marquardt fre-
quency-domain fitting and by non-linear least squares fit-
ting in the time-domain [19], as compared to manual
frequency-domain fitting of data acquired with the identi-
cal protocol and equipment [20]. A 50% increase in the
uncertainty of a PCr/ATP measurement is equivalent to a
50% reduction in the SNR of the measurement from what
could have been achieved. Frequency-domain techniques
have been reviewed elsewhere [13], and other variants
include the LCModel which fits the spectrum with a
linear combination of in vitro spectra acquired from
individual metabolites [21,22], and time-frequency analysis
using wavelets which separates and subtracts each compo-
nent from the raw signal [23].

In this paper, we present a new frequency-domain tech-
nique for MRS quantification that overcomes phasing
problems and addresses baseline issues with current tech-
niques as applied to low-SNR, high-artifact regimes. Using
a Lorentzian model, we show that the real-imaginary tra-
jectory of each peak in a spectrum scribes a circle in the
complex plane with a diameter equal to the peak height.
The complex spectrum is fitted using a set of active circle
models. The use of both real and imaginary components
as a continuous circular trajectory with this circle fitting
(CFIT) approach improves the stability of the estimation
process, effectively eliminates zero and first-order phase-
correction, and reduces the baseline problem to one of
completing circles for peaks whose loops are open in the
complex plane. Prior knowledge is easily incorporated as
external energy terms [24]. The CFIT technique is tested
with simulated brain 31P spectra, as well as with real in vivo
localized human chest and heart 31P spectra in which prob-
lems of low SNR, phasing, baseline, and overlapping peaks
are endemic. The stability and accuracy of CFIT are com-
pared with our current standard analysis tool, a frequency-
domain absorption mode fitting routine, CSX [25,26], and
with a widely available time-domain method, AMARES

[6].

2. Theory

The complex time-domain MRS signal, s (t), is most
commonly modeled as the sum of exponentially damped
sinusoids:

sðtÞ ¼
XK

k¼1

akej/k eð�dk�j2pfkÞt þ nðtÞ; ð1Þ

where K is the number of sinusoidal components in the sig-
nal, fk is the frequency of the kth sinusoid, ak is its ampli-
tude, dk is its damping constant (¼ 1=T �2k), /k is its phase,
and j =

p�1. The term n (t) is a random complex white
noise with a circular Gaussian distribution. In the frequen-
cy-domain, the spectrum, S (f), is the Fourier transform
(FT) of Eq. (1), and is the sum of a series of Lorentzian
functions, one for each peak:

Sðf Þ ¼
XK

k¼1

ak

dk
ej/k

1

1þ ð2pðf � fkÞ=dkÞ2

 

þ j
2pðf � fkÞ=dk

1þ ð2pðf � fkÞ=dkÞ2

!
þ Nðf Þ. ð2Þ

Eq. (2) describes a helix in the three-dimensional (3D)
space comprised of the real-imaginary complex plane and
the chemical shift/frequency axis. The bracketed terms
are of the form, x = 1/(1 + t2), y = t/(1 + t2), which is a
parametric equation for a circle. The projection of the helix
onto the complex plane thus forms a set of parametric
equations that, for Lorentzian lines, describe circles with
centers at the real-imaginary coordinates (ak/2dk, 0) and ra-
dii ak/2dk as exemplified for one peak in Fig. 1A for / = 0.
The effect of setting / „ 0, is simply to rotate the circle
about the origin of the complex plane, moving the circle�s
center (Fig. 1C). The relationships between the damped
sinusoid, the corresponding peak in the spectrum and the
circle in the complex plane are summarized in Table 1.
The model spectrum is thus a set of circles, one for each
peak, which form a series of nested curves in the complex
plane resolved in the orthogonal dimension by the f param-
eter. This is illustrated in Fig. 2, which shows a simulated
31P spectrum from the human brain. Fig. 2A is the real part
of the spectrum. Fig. 2B shows the projection of the spec-
trum onto the complex plane revealing the circular pat-
terns, while Fig. 2C is a 3D plot of the spectrum showing
its helical trajectory in this space.

Because the trajectory of each peak in the complex plane
is circular, we can model them with active circles. The ac-
tive circles are contours that adaptively deform to best fit
the model spectrum to the measured spectrum by minimiz-
ing a measure of the fit error while preserving their circular



Fig. 1. The spectrum of a single peak is a helix in the 3D space comprised of the real, the imaginary, and the frequency axes. The projection of the helix
onto the complex plane is a circle (A), while the projection of the helix onto the plane of the real and the frequency axes is the absorption-mode spectrum
with phase / = 0� (B). Shifting the phase by / = 60� merely rotates the circle diameter about (0,0) by 60� without altering the fundamental properties of
the circle (C). However, the spectrum (D) is now a mixture of absorption and dispersion modes and would need to be phased.

Table 1
Relationship between the peak parameters in different domains

Parameter Time Frequency Circle

ak Amplitude Peak area Radius times number of
points in semicircle
centered at fk

dk Damping
constant

Linewidth Number of points in
semicircle centered at fk

/k Phase shift Mode Circle position/orientation
fk Frequency Peak position Location of point density

minimum on circle
ak/dk Amplitude/

decay
Peak height Circle diameter
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shape in the complex plane. The fit error, e (f), is the com-
plex difference between the measured spectrum and the sum
of the model defined in Eq. (2) plus the baseline in the com-
plex plane. Initial values for the parameters are either pro-
vided by the user, estimated from the spectrum, or set to
fixed values. The peak center frequency, fk, needs to be
set reasonably accurately, especially when the peaks par-
tially overlap as is typically the case with 31P MRS ATP
doublets and triplets. Then, minimizing the energy, of the
fit error

E ¼
Z

eðf Þ�eðf Þ df ð3Þ

using a gradient descent approach leads to an iterative
solution in which the parameters change under the effect
of the fit error. In this sense, e (f) acts as an external error
force [24].

The error force acting on the circumference of an active
circle can be resolved into a radial-like component emanat-
ing from the origin of the complex plane, erk (f), and a com-
ponent orthogonal to it, eok (f). The component tangential
to the circle is denoted etk (f). The radial-like force exerts
a compression/inflation effect that affects the circle radius
and hence peak height. The orthogonal force rotates the
circle about the complex origin, affecting the circle orienta-
tion or peak phase. The tangential force has two effects: a
stretching/shrinking effect that changes the point density
on the circle and adjusts the linewidth; and rotation of
the whole circle about its center, affecting the peak center
frequency. These four effects are used to adapt each circle
by changing the appropriate parameter so as to minimize
the acting force. The error forces along the circle circumfer-
ence are weighted using a generally bell-shaped function, w,
that is centered around the peak center frequency, to
emphasize the contribution of nearby error forces in the
circle evolution process, reduce the effect of noise and arte-
facts, and provide a means for selective analysis.

We now describe how the model circles evolve under the
effect of the error forces. Details of how the minimization
of E leads to the following results are given in Appendix
A. Consider the kth circle. The incremental changes in
the circle radius rk, the center frequency fk, the phase /k,
and the damping constant dk are calculated according to
the direction of the gradient of E as follows:

Drk ¼ cr

Z
wrkðf � fkÞerkðf Þdf ; ð4Þ

Dfk ¼ cf

Z
wfkðf � fkÞetkðf Þdf ; ð5Þ

D/k ¼ c/

Z
w/kðf � fkÞeokðf Þdf ; ð6Þ



Fig. 2. (A) The real part of the simulated 31P human brain spectrum with noise r = 25. Part (B) is the projection of the 3D spectrum trajectory onto the
real-imaginary plane. Part (C) is a 3D plot of the spectrum showing the helical trajectory of the peaks.

Communication / Journal of Magnetic Resonance 179 (2006) 152–163 155
Ddk ¼ cd

Z
wdkðf � fkÞetkðf Þsgnðf � fkÞdf ; ð7Þ

where erk(f), eok(f), and etk(f) are as defined above, wpk(.) is
the weighting function for parameter p in the kth peak, cr,
cf, c/, and cd are the coefficients determining the step size
for each parameter, and sgn is the signum function. The
weighting function as well as the coefficients are generally
functions of the kth peak being processed, and time. All
circles deform during each iteration until they either reach
equilibrium, or the number of iterations exceeds a designat-
ed threshold. The criterion used for equilibrium is that
there is no significant change in the area of all the peaks.

Baseline distortions manifest as a displacement of points
on the circle such that the ends of each peak no longer
complete a circle in the complex plane. To account for
baseline distortion, the baseline is modeled as a free-form
active contour: a snake [24]. The snake does not take the
form of any specific function such as a polynomial or the
like (Appendix A). While constrained by its elastic proper-
ties, the snake is adjusted to minimize an energy term rep-
resenting the residuals of the fit between the measured data
and the model spectrum. The elastic properties of the con-
tour are classically defined in terms of its length and curva-
ture. The baseline is simultaneously fitted with the peaks by
updating both the active circles and the baseline in each
iteration of the fitting process.

The CFIT technique can thus be summarized by the fol-
lowing steps:

1. Initialize K active circles by peak picking or by a black-
box method;

2. Calculate the error force between the measured data and
the model spectrum;

3. Adjust circle parameters to minimize the error energy for
all circles using Eqs. (4)–(7);
4. Adjust the baseline snake parameters to minimize the fit
error;

5. Repeat steps 2–4 until either equilibrium or the maxi-
mum number of iterations is reached;

6. Output peak frequencies, areas, and heights. Display the
fit.
3. Methods

3.1. Preprocessing

CFIT is applied to data prepared in the frequency-do-
main in the usual manner with exponential filtering, zero-
filling (ZF), and FT of the time-domain signal [27]. The
spectrum is typically normalized by the maximum value
of the magnitude of a standard spectrum so that the same
set of parameters, cr, cf, c/, and cd, can be used for all spec-
tra acquired under similar conditions. Note that in Fig. 1,
the portion of the peak with the highest SNR includes most
of the circle while the relatively long peak tails with low
SNR contribute to a very small fraction of the circle�s
arc. While the number of points added by zero-padding
is uniform across the spectrum, the weighting function,
w, used in the fitting process, emphasizes the contribution
of points with high SNR. Accordingly, simulations showed
that increasing the ZF factor increases the number of sam-
ple points in the high-SNR portion of the circle arc, and
improves both the fitting success rate, and reduces the rel-
ative root mean square error (RRMSE) and the root mean
square error (RMSE) of the amplitude, damping and fre-
quency estimates, as shown in Fig. 3.

Although phasing the spectrum is not required in CFIT,
a basic zero- and first-order phasing function is included
for the sole purpose of facilitating a user�s ability to inter-
actively pick peak parameters. This is standard for most



Fig. 3. Results of quantifying the simulated 31P spectra comprised of 256 complex points using CFIT with an 8-fold (ZF = 8) and a 4-fold zero-filling
(ZF = 4), and AMARES. The success rate (A), the frequency RMSE (B), the amplitude RRMSE (C), and the damping constant RRMSE (D) for the
K = 7 ATP resonances, are plotted against the SD of the added noise. The Cramer-Rao bound (CRB) on the error for the ATP is also shown in (B–D).

Table 2
True parameter values of the simulated 31P MRS signal [6]

k fk (Hz) fk (ppm) dk (Hz) ak (a.u.) /k (�)

1 �86 �17.2 50 75 135
2 �70 �16.6 50 150 135
3 �54 �16.0 50 75 135
4 152 �8.0 50 150 135
5 168 �7.4 50 150 135
6 292 �2.6 50 150 135
7 308 �2.0 50 150 135
8 360 0 25 150 135
9 440 3.1 285.7 1400 135

10 490 5 25 60 135
11 530 6.6 200 500 135
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current user-interactive approaches. The fitting process
actually uses the initial un-phased spectrum to avoid any
added distortions that may arise from first-order phase cor-
rection [15]. Phasing may also be applied to the post-pro-
cessed fitted spectrum, if desired, for display purposes.

3.2. Adding prior knowledge

Prior knowledge is easily incorporated in CFIT by
assigning an energy term to each constraint or feature that
one wishes the solution to stick to. The constraints need
not be linear. Minimization of the constraint energy is also
carried out using the energy descent method. The external
constraints affecting the model spectrum can be represented
by spring forces that drive the contour towards the features
of interest. Each of the active circles adapts under the influ-
ence of the error forces and the constraints until it is stabi-
lized. In general, a parameter p that is to be estimated, is
adjusted in each iteration under the influence of the two
sets of forces via

p  p þ kpðpd � pÞ þ
Z

epðf Þdf ; ð8Þ

where pd is the desired value that p should approach, ep is
the external error forces and kp is the spring constant. If the
constraint to be imposed is a ratio m between two param-
eters p and q, such as the peak amplitudes in a multiplet,
then we set pd = mq. The q parameter is then also affected
by the prior knowledge by setting qd = p/m. If a fixed dis-
tance Dp between two parameters p and q is required, like
the fixed frequency separation between the ATP fine peaks,
we set pd = q + Dp and qd =p � Dp. Other constraints can
be imposed in a similar fashion.
4. Results

4.1. Fitting simulated MRS signals

CFIT was first tested with a simulated in vivo 31P hu-
man brain spectrum consisting of 256 complex time-do-
main data points, zero-filled eight-times and comprised of
11 exponentials, defined elsewhere [6] with parameters sum-
marized in Table 2. The spectrum in Fig. 2 is illustrated
with complex white Gaussian noise of standard deviation
(SD) r = 25 added, and a 10-Hz exponential filter applied.
The sampling frequency, fs is 3 kHz, and the fine peaks in
the ATP multiplets are split by 16 Hz. The technique was
tested on 100 different simulated signal-plus-noise realiza-
tions, for each of 20 SNR levels in the range 5 6 r 6 100
with a step of 5, for a total of 2000 runs. The initial values
for the frequency and damping ratio were picked once at
each noise level and the same initial values were used for
all signals at the same noise level. To obtain a good initial



Communication / Journal of Magnetic Resonance 179 (2006) 152–163 157
value for the circle phase, a small number of points around
the chosen center frequency were fitted to a circle by a stan-
dard least-squares fitting routine. The phase of the fitted
circle was taken as the initial phase for each circle.
Although an accurate initial value is not required for
phase, care must be taken not to start with an initial value
for the circle/helix that is 180� from the true phase.

Prior knowledge of the ATP doublets (a-ATP and c-
ATP peaks) and triplet (b-ATP) was implemented via the
following constraints; d1 = d2 = d3, d4 = d5, d6 = d7,
a1 = a2/2 = a3, a4 = a5, a6 = a7, /1 = /2 = /3, /4 = /5,
/6 = /7, f3 = f2 + 16 = f1 + 32, f5 = f4 + 16, and

f7 = f6 + 16. The parameters cr, cf, c/, and cd were empiri-
cally set to 0.65, 0.4, 1.6, and 41, and kr, kf, k/, and kd to
0.2, 0.8, 0.4, and 0.6, respectively, to optimize the fit. The
weighting functions are chosen as Lorentzian that evolve
during peak processing, as described in Appendix A. The
Lorentzian window is chosen to have a linewidth that is
half the line width of the currently processed peak at the
current iteration.

For comparison, the same data was quantified using
AMARES as provided in the standard jMRUI package,
available from http://www.mrui.uab.es/mrui/ upon re-
quest. AMARES [6] is a time-domain fitting technique that
has been demonstrated to have stable and accurate perfor-
mance [6,8]. This program requires the user to pick the
peaks providing initial values for the peak frequencies
and linewidths, and to set the constraints in a similar fash-
ion as in CFIT. The constraints used for AMARES (dk, ak,
fk, and /k) and CFIT were identical.

As reported in [8], the robustness of each method is eval-
uated by computing its success rate, i.e., the number of
times, out of the total number of simulation runs, that
the method is able to resolve the 11 peaks within specific
intervals lying symmetrically around the true frequencies
of the peaks. The half-widths of these intervals are set to
8 Hz, i.e., half the separation of the closest peaks in the
data. The peak error is quantified by the mean RRMSE de-
fined as

mean RRMSE ¼ 100

K

XK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðpkj � pkÞ
2

p2
k

vuut ð9Þ

for the amplitude and damping estimates, and as the mean
RMSE

mean RMSE ¼ 1

K

XK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðpkj � pkÞ
2

vuut ð10Þ

for the frequency estimates, where K = 11, is the total num-
ber of peaks, J is the number of simulation runs in which
the method was able to find every peak within the corre-
sponding frequency interval, pkj denotes the parameter esti-
mate of the kth peak obtained in simulation run j, and pk

denotes the true parameter value of the kth peak [8].
Fig. 3 shows that the success rate for CFIT with high

zero-filling and AMARES using simulated data are compa-
rable. Both perform perfectly when SNR is high (r < 50),
but deteriorate as SNR declines further. Figs. 3(B–D) plots
the mean RRMSE values for the amplitude and the damp-
ing constant, and the mean RMSE values for the frequency
of the ATP complex (the first seven peaks in the simulated
spectrum) as a function of noise level for the simulated
data. The Cramer-Rao bound (CRB), a measure of the best
attainable precision of an unbiased estimate in the presence
of random noise [28], is also plotted for each of the estimat-
ed parameters. The results of these simulations are consis-
tent with AMARES� reputation as one of the best
performing methods relative to the CRB [8]. Even so, rela-
tive performance can reverse in the presence of baseline
artifacts. For example, perturbing the first four time points
of the model brain spectrum by multiplication by random
numbers produces a mild baseline roll as shown in Fig. 4.
The success rate of CFIT is comparable to the rate without
perturbation, albeit with some increase in the amplitude er-
ror. However the performance for uncompensated
AMARES is decimated. AMARES performance does im-
prove with initial filtering to reverse the effect of the im-
posed distortion, but CFIT remains the more successful
in this instance (Fig. 4A). Fig. 5 shows a sample output
of CFIT for one of the processed simulated spectrum for
the case r = 25. At this level of noise, the SNR of the b-
ATP peak is about 25.

4.2. In vivo 31P data

CFIT and AMARES were tested on 98 in vivo local-
ized 31P spectra acquired in 5–7 min from the human
chest and heart at 1.5 T using a cardiac-gated, quantita-
tive, one-dimensional chemical shift imaging (CSI) proto-
col employing adiabatic 60� excitations and an 0.7 ms
acquisition delay as described elsewhere [29]. The spectra
derive from normal subjects (30%), patients with dilated
cardiomyopathy and congestive heart failure (40%), and
patients with left ventricular hypertrophy (30%), partici-
pating in ongoing studies of cardiac creatine kinase flux
wherein scan times are limited by the need to complete
six MRS acquisitions in a single exam [29,30]. Despite
its performance in simulations with respect to the CRB,
AMARES is not used for in vivo cardiac 31P MRS quan-
tification in our laboratory due to an unacceptable failure
rate. Instead, we routinely use a frequency-domain inter-
active fitting program, CSX [25,26], wherein peak height,
frequency, and linewidths are fitted by a simplex routine
after the user phases the spectrum, selects points for base-
line correction, and identifies initial frequencies of peaks
selected for fitting. The performance of CFIT was there-
fore additionally compared to CSX, our reference stan-
dard, for which fit results for all 98 spectra had already
been documented. Spectra were thus selected for analysis
based only on the chronological order in which studies
were performed, and the availability of pre-existing CSX
measurements with a minimum fitting threshold for
SNR of about 5 for b-ATP.

http://www.mrui.uab.es/mrui/


Fig. 4. Effect of simulated baseline errors on CFIT (ZF = 8) and AMARES performance (A and B) on the 256-point simulated 31P spectra brain spectra
from Fig. 3. The signal was distorted by multiplying the first four time points by the random numbers, 0.1453, 0.4715, 1.316, and 0.8948, to produce a mild
baseline roll (C). The amplitude error estimates for AMARES in (B) are limited by its low success rate (<10%) in (A). Application of 20-point initial
weighting (s-shaped) filter to AMARES (+ filter) significantly improves its success rate (A, center curve).

Fig. 5. Analysis results of the simulated 31P human brain spectrum from Fig. 2 (r = 25) using CFIT. From bottom up, the real part of the simulated
spectrum, the real part of the fitted spectrum, the real part of the individual circles, and the real part of the residual error (top).
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Spectra to be analyzed for CFIT were prepared with 8-
fold zero-filling, and a 10-Hz exponential filter. The adapt-
ing parameters and the windowing function were the same
as in the simulations. The spectra were roughly phased by
an experienced in vivo spectroscopist (PAB) who identified
the initial peak locations. As in the simulations, the b-ATP
peak was fitted to a triplet and the a- and c-ATP peaks
were fitted to doublets. One-to-three Lorentzian peaks
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were used to model the PCr peak since its shape was not
Lorentzian: the use of multiple Lorentzian peaks to
approximate other non-Lorentzian peak shapes (Gaussian,
Voigt, etc) has been reported before [7]. The multiple PCr
peaks are linked so that they have the same phase. This
constraint is essential for eliminating solutions which have
peaks that cancel. The in vivo spectra were quantified with
AMARES in the same way by the same user. AMARES re-
quires additional prior knowledge estimates of linewidths
for the ATP multiplets, which are provided interactively.
The spectra were analyzed 0.5–3 years earlier in the same
way by the same user with the CSX program, except that
they were more carefully phased (zero and first-order),
baselines were corrected with user-defined points between
the peaks, and the ATP peaks were fitted only as singlets
but with Gaussian-shaped lines. These differences reduced
the number of parameters that needed to be estimated for
the CSX method compared to CFIT and AMARES.

Because the true values of in vivo parameters are not
known, fitting failures cannot in practice be defined by
comparison with true values. However, we can record a
failure when the fit misses one peak completely, or when
anomalously small or anomalously large areas of a peak
are returned. The number of fit failures involving one or
more of the ATP or PCr peaks in the 31P MRS cardiac data
was 4/98 for CFIT. This compares with 29/98 for
AMARES, and 8/98 failures for CSX, the latter involving
ATP only. The total number of cases in which at least one
of the three fitting methods fails was 31.

The ratio of the peak areas of the b-ATP and c-ATP
provides an independent gauge of the robustness of the dif-
ferent fitting routines. This ratio must be approximately
unity since the nucleoside triphosphate sources are the
Fig. 6. The ratio of the peak areas b-ATP/c-ATP for the in vivo 31P spectra f
CFIT. The plot excludes all of the 31 fit failures. The true value for the ratio
same, and additional contributions to the c-resonance from
other phosphates are small. The ratio obtained using the
three fitting methods is plotted in Fig. 6, and the means
and SD for the ratio obtained by each method are listed
in Table 3. While AMARES yields erroneous results that
greatly deviate from unity in many cases, CFIT performs
comparably with CSX, our current standard.

The PCr/ATP ratio of peak areas is a physiologically
important metabolic measure [20]. Fig. 7 plots the PCr/b-
ATP ratio measured by AMARES and CFIT against our
current standard, CSX. With perfect agreement, all the
data would fall on the 45� line and lie in the known range
of about 0.2–5 for normal and sick human chest and heart.
The CSX data show reasonable agreement with CFIT but
much larger disparity for AMARES, with values lying out-
side the physiological range. Table 4 reports the Pearson
correlation coefficient analysis of the PCr/b-ATP, PCr/a-
ATP, and PCr/c-ATP ratios measured using AMARES,
CSX, and CFIT. To avoid degrading the regression with
the much larger number of outliers produced by
AMARES, PCr/ATP ratios greater than 10 were eliminat-
ed from this analysis. Clearly, the agreement between CSX
and CFIT is the highest for all three ratios. Again even
with all of the AMARES fit failures excluded, assuming
CSX is our standard, the mean RRMSE of the peak areas
of b-ATP, a-ATP, and PCr peaks show greater scatter
when measured with AMARES than with CFIT, especially
for PCr, as demonstrated in Table 5. A sample CFIT anal-
ysis of one of the processed spectra is shown in Fig. 8.

The computational time in CFIT is longer than
AMARES but comparable or faster than the simple CSX
frequency-domain fitting routine. Implementation on a
PC (Intel Pentium M processor 1.5 GHz and 512 MB of
rom the human chest and heart, as estimated using CSX, AMARES, and
is �1.



Table 3
Mean and SD of the ratio of the peak area of the b-ATP/c-ATP estimated
using different methods for the in vivo 31P MRS chest and heart data

Method Mean SD

CSX 0.97 0.32
AMARES 1.43 1.09
CFIT 0.84 0.35

The analysis excludes data from the total of 31 fit failures.

Fig. 7. The ratio of the peak areas PCr/b-ATP for the in vivo 31P chest
and heart spectra as estimated using AMARES (circles) and CFIT (points)
vs. the CSX measurements (horizontal axis). AMARES and CFIT points
that agree with CSX should fall on the 45� line (dashed). The plot excludes
the 31 fit failures. True physiological values for this ratio in human chest
and heart lie in the range 0.2–5.

Table 4
Correlations (r) between AMARES, CSX, and CFIT for the peak area
ratios PCr/b-ATP, PCr/a-ATP, and PCr/c-ATP for the in vivo 31P MRS
signals

Ratio AMARES-CFIT AMARES-CSX CFIT-CSX

PCr/b-ATP 0.54 0.53 0.75
PCr/a-ATP 0.36 0.32 0.71
PCr/c-ATP 0.60 0.68 0.82

Data from the total of 31 fit failures are eliminated from the regression.

Table 5
Mean RRMSE values and minimum (m) and maximum (M) error relative
to CSX for the amplitude estimates obtained using AMARES and CFIT
from the in vivo 31P MRS signals after exclusion of the 31 fit failures

Peak Method RRMSE [m, M] (%)

b-ATP AMARES 30.6 [0.29, 81]
CFIT 25.4 [0.03, 58]

a-ATP AMARES 69.8 [2.3, 262]
CFIT 58.9 [2.1, 178]

c-ATP AMARES 45.3 [1.7, 93]
CFIT 60.8 [0.67, 254]

PCr AMARES 74.5 [2.4, 477]
CFIT 43.3 [0.04, 93]
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memory) operating on the Microsoft Windows XP plat-
form in MATLAB v6.5 (Mathworks, Natick, MA) re-
quired an average of 87 ± 47 iterations to achieve a
stable solution in 2.9 ± 1.6 s.

5. Discussion

We have introduced a new frequency-domain spectral
analysis technique, CFIT, that utilizes active circles to
directly fit the circular trajectory that Lorentzian resonanc-
es scribe in the complex plane. The method has the advan-
tage of eliminating the effect of zero- and first-order phase
correction on peak quantification. Baseline roll and over-
lapping peaks affect the continuity of circles in the complex
plane, and are dealt with using active snakes. Prior knowl-
edge is incorporated in the usual way, and non-Lorentzian
peaks accommodated using multiple Lorentzian peaks. The
ability of CFIT to accommodate large first-order phase er-
rors and baseline artefacts suits it well to in vivo analyses
where such problems are endemic. It is especially suited
to quantifying low-SNR high-artifact free-induction decays
in which acquisition is delayed by gradient-encoding, such
as cardiac 31P CSI data [29,30].

It is disappointing that the performance of CFIT is infe-
rior to that of the standard time-domain fitting technique,
AMARES, with simulated data, as indexed by the Cramer-
Rao bounds for key fitting parameters in the absence of
baseline artefacts. However, AMARES is not used in our
laboratory for analyzing human cardiac 31P CSI data due
to its unacceptably high failure-to-fit rate, an anecdotal
observation not previously documented. Therefore, the
performance comparison of CFIT on about a hundred real
in vivo data sets analyzed by our standard absorption-
mode frequency-domain technique, CSX, as well as by
AMARES is, in our view, the more relevant comparison.
Despite the excellent performance of AMARES on simu-
lated noisy data free of baseline artefacts, we document
with simulations that the failure rate of AMARES can be-
come excessive in the presence of distortions that cause
baseline artifacts. Moreover, for the in vivo data its failure
rate is indeed unacceptably high compared with the other
two methods, and its accuracy much lower. Conceivably,
better adjustment of AMARES constraints and filtering
could enhance the performance with our in vivo data, just
as better filtering that does not distort the circles could also
benefit CFIT. In our view, the technique of choice is the
one that provides the best fit to the worst spectrum from
which measurements must be made, within the limits of
detection permitted by the SNR. CFIT had the lowest fail-
ure rate with real human cardiac 31P CSI data, and per-
formed comparable to CSX with respect to measures of
accuracy (b-ATP/c-ATP; Fig. 6) and scatter (RRMSE; Ta-
bles 3–5, Figs. 6 and 7) on peaks with SNR as low as �5.
By these criteria CFIT is a suitable replacement for CSX,
our current standard for cardiac 31P MRS.

New quantification techniques are often accompanied
by claims of accuracy and robustness [6,14]. However, cau-
tion is warranted when advantages are demonstrated only



Fig. 8. Analysis of a real 31P spectrum from a female heart patient using CFIT. The SNR of the b-ATP peak is about 8. From bottom up, the real part of
the measured spectrum, the real part of the fitted spectrum, the real part of the individual circles, and the real part of the residual error (top).

Communication / Journal of Magnetic Resonance 179 (2006) 152–163 161
in cases of high SNR, idealized line-shapes, or signals con-
taining only Gaussian noise, such as is common with sim-
ulations. In particular, many in vivo signals contain
significant artefacts that cannot be modeled with Gaussian
noise. An estimator that deals with in vivo data assuming
Gaussian noise may thus be misled in situations where such
artefacts arise. This observation together with our perfor-
mance measurements on simulated and real data, render
questionable the suitability of the Cramer-Rao bound as
a measure of the performance of estimators of in vivo
MRS signals in such settings.

Two key factors help CFIT overcome the effects of arte-
facts, resulting in better in vivo performance. The first is
that the determination of step size during parameter adap-
tation involves an integration process, which tends to can-
cel random errors. The second factor is the bell-shaped
window (implemented here as Lorentzian) used for weight-
ing the error force that affects each active circle. Such
weighting greatly reduces the contamination of nearby
artefacts and also allows for selective frequency analysis.
In this case, residuals from outside the quantified area
are detected using the baseline snake. The ability to impose
prior knowledge is an additional major factor that stabiliz-
es the performance of fitting routines in general, including
CFIT. Incorporating prior knowledge has been shown to
benefit accuracy [28], and a wide range of prior knowledge
including non-linear constraints, can be incorporated to
guide quantification with CFIT as desired.

In conclusion, CFIT is a new frequency-domain spectral
fitting technique that has been tested on real in vivo cardiac
31P MRS data, warts-and-all. It provides accurate stable
performance, and appears to be a suitable alternative to
existing standards.
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Appendix A

A.1. Active circle models

Consider the model spectrum S (f) given in Eq. (2)
including the baseline model. We define:

pkðf Þ ¼ 2pðf � fkÞ=dk and rk ¼
ak

2dk
. ðA:1Þ

Then

Sðf Þ ¼
XK

k¼1

2rkej/k
1

1þ pkðf Þ
2
þ j

pkðf Þ
1þ pkðf Þ

2

 !

þ baselineðf Þ ðA:2Þ

The fit error is the difference between the measured and the
model spectra,

eðf Þ ¼ Smeasuredðf Þ � Sðf Þ; ðA:3Þ
with the error energy, E, given by Eq. (3). E is minimized
using the gradient descent method.

The gradient of E with respect to rk,
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where Æ.,.æ is the inner product; uk (f) and ûk(f) are the radial
vector connecting the origin of the complex plane to a point
at frequency f on the kth circle and the unit vector in that
direction, respectively, and 1/(1 + pk (f)2) serves as the error
weighting function, wrk (f), which is maximum at fk.

The gradient of E with respect to /k, fk, and dk can be
similarly derived as

oE
o/k
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Z
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and
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eðf Þ; q_

?
k ðf Þ

* +
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where u?k ðf Þ � jukðf Þ is perpendicular to the radial vector
uk(f) at f, qk (f) = 2[uk (f) � (1/2, 0)ej/k ] is the radial vector
connecting the center of the kth circle to the point on that
circle at frequency f, and q?k ðf Þ � �jqkðf Þ is thus tangent
to the circle at f.

We define the components of e (f) in the radial-like direc-
tion uk (f), the orthogonal direction u?k ðf Þ, and the tangen-
tial direction q?k ðf Þ as erk(f), eok(f), and etk(f), respectively.
The gradients of E in these directions are
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Z
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oE
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and
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where the weighting functions wrk (f), w/k (f), wfk (f), and
wdk (f) are given by

wrkðf Þ ¼
1

1þ pkðf Þ
2
; ðA:14Þ
w/kðf Þ ¼
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2
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wfkðf Þ ¼
rk=dk

1þ pkðf Þ
2
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2

. ðA:17Þ

These weighting functions are Lorentzian with the same
linewidth as the processed peak. In our implementation,
we used this same weighting function with half the line
width because it yielded better accuracy and stability than
with the full linewidth. Other weighting functions with dif-
ferent linewidths and properties can be substituted to
achieve preferred levels of artefact rejection.

We refer to this as an active circle model. It can be con-
sidered an example of the more general set of analytical
deformable models that are contours with a general prede-
fined shape. In these models, prior knowledge about the
shape is used directly by defining a curve described by a
set of parameters that encode the general shape character-
istics [31–33].
A.2. Snakes

Active contour models, also known as snakes, are ener-
gy-minimizing contours that are constrained by their inter-
nal elastic forces, while driven by external forces towards
desired external features. In image analysis applications,
where active contour models were introduced [24], the
external forces are provided by the image brightness and
edge characteristics as well as higher-level information.
The contour energy functional is constructed so that local
minima correspond to desired features. The fitting problem
is formulated as an energy minimization problem, and is
solved using a suitable minimization technique. A contour
is described parametrically by v (s) = (x(s), y (s)) where x (s),
y (s) are x and y coordinates along the contour and s in
[0,1] is the contour length. The contour model defines the
energy of a contour v (s), the snake energy Esnake, as,

Esnake ¼
Z 1

0

EintðvðsÞÞ þ EextðvðsÞÞ þ EconðvðsÞÞds; ðA:18Þ

where Eint is the internal energy of the contour, imposing
continuity and curvature constraints, Eext is the external
energy constructed to attract the snake to desired features;
and Econ is another energy term which allows various con-
straints to be applied during the minimization process. An
initial contour evolves by minimizing the snake energy
using a minimization technique like gradient descent, as
used here. In this work, the baseline is modeled as a snake
constrained by its smoothness and is driven by the fit error.
The baseline is simultaneously fitted with the peaks by per-
forming the active circles updates and a baseline update in
each iteration of the solution.
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